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A spectral method employing eddy-viscosity eigenfunctions is used 
to solve the full three-dimensional nonlinear hydrodynamic equations 
for the numerical computation of flows caused by tides or meteorologi- 
cal forcing. An explicit finite element method is developed to compute 
the nonlinear advective terms and an explicit treatment of bottom fric- 
tion is used. This leads to a rapidly convergent expansion and relatively 
few eigenfunctions are required to obtain accurate solutions. An 
Arakawa B-grid is used in the horizontal directions and leapfrog time- 
stepping. The eigenfunctions are computed at the beginning of the 
program, for an arbitrary spatial dependence of eddy viscosity, using 
the SLEIGN subroutine. Several model problems have been used to test 
the accuracy, stability, and computational efficiency of the method. 
? 1992 Academic Press. Inc. 

1. INTRODUCTION 

Numerical studies of the three-dimensional motion of the 
sea under the influence of wind and tide have in recent years 
been made by several authors using a number of different 
approaches. Some of the most successful of these 
approaches make use of expansions of the two horizontal 
components of fluid velocity in terms of a set of basis 
functions of the vertical coordinate. By this means the 
three-dimensional equations are reduced to a set of 
two-dimensional modal equations for the coefficients in 
these velocity expansions. 

The use of a basis of “eddy-viscosity eigenfunctions” for 
this purpose was first proposed by Heaps [ 1, 21 to solve the 
linearized three-dimensional tidal equations. The significant 
advantage of this particular basis is that the modal equa- 
tions are uncoupled. Since Heaps employed analytic eigen- 
functions, his use of the method was restricted to problems 
with simple eddy-viscosity profiles and to linear bottom 
friction. Subsequently, extensions of the method have been 
made by Davies and Furnes [3] to include nonlinear 
friction and by Davies [4] and Furnes [S] to more general 
eddy-viscosities. A general approach is described by 
Davies [6, 71. 

A more general Galerkin method was developed by 
Davies and Owen [S] for the linearized model and by 

Davies [9] for the fully nonlinear equations. In these papers 
basis sets consisting of cosine functions, Chebychev polyno- 
mials, and Gram-Schmidt orthogonalized polynomials 
(equivalent to shifted Legendre polynomials) were used. 
Davies [7] later combined the Galerkin method with use of 
a basis set of eddy viscosity eigenfunctions. 

The rate of convergence of the expansions in terms of 
eddy viscosity eigenfunctions was found by Davies [4, 71 to 
be relatively slow, requiring typically 15-20 basis functions 
to obtain the desired accuracy. Much more rapid con- 
vergence is obtained using Chebychev or Legendre polyno- 
mials [9], but the disadvantage of these basis sets is that the 
modal equations are coupled even in the linear approxima- 
tion Using eddy-viscosity eigenfunctions, the equations are 
coupled only through the nonlinear terms. A later modiiica- 
tion of the method that significantly accelerates the 
convergence was proposed for the linearized equations by 
Lardner [lo]. With this modification it was found in one 
model problem that only 4-5 eddy-viscosity eigenfunctions 
were required to give the same accuracy as had previously 
[4] been obtained with 20-25 eigenfunctions. The rate of 
convergence is comparable to that obtained using B-splines 
[ 111 or Chebychev polynomials [9] and has the advantage 
over these approaches of uncoupling the linear modal equa- 
tions. An equivalent modification has also been proposed by 
Davies [ 121. 

In the present paper this modified eddy-viscosity eigen- 
function method is extended to the nonlinear hydrodynami- 
cal equations. An explicit method is used to represent the 
nonlinear bottom friction and an explicit finite element 
method is used for the nonlinear advective terms (compared 
to the explicit time-splitting technique used by Davies [9]). 
This treatment of the bottom friction does not add 
significantly to the CPU requirements of the algorithm, but 
we have found, as did Davies, that computation of the 
advective terms is by far the most expensive part of the 
algorithm, in our case increasing the CPU requirements by 
a factor of more than 3. The finite element technique is the 
most effective method we have found for minimizing this 
cost. 
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Most of the finite difference schemes that have been 
developed for hydrodynamical modelling, including the 
algorithms based on the spectral method, have been based 
on an Arakawa C-grid [13]. While this choice of grid has 
the advantage of providing natural centred-difference 
approximations to most of the dominant terms and of mini- 
mizing numerical dispersion at short wavelengths, it does 
lead to certain difficulties for some three-dimensional algo- 
rithms. The first of these, pointed out by Jamart and Ozer 
[ 141, is the occurrence of spurious numerical boundary 
layers unless the Coriolis terms are treated by what these 
authors term “wet points only” averaging. A second, and 
probably more serious, disadvantage of the C-grid that 
arises for spectral methods is that it is necessary to use the 
same basis functions at all grid points if the four-point 
average for the Coriolis terms is not to couple the modal 
equations. The basis set of eddy-viscosity eigenfunctions are 
independent of position only if the eddy viscosity function 
has the same vertical profile at all points, apart from an 
overall scaling factor, and this is a severe restriction for a 
water body with widely varying parameters such as depth or 
bottom roughness. 

Because of these problems, Lardner and Song [ 151 have 
examined the feasibility of using alternative Arakawa grids 
for which the two velocity components are computed at the 
same spatial points. They have concluded that the Arakawa 
B-grid is about as accurate and computationally efficient as 
the C-grid, and it does not suffer from the problems 
described above. Consequently, in this paper a B-grid 
scheme is used and is found to work satisfactorily. It is 
worth noting that a B-grid has also recently been used by 
James [ 161. 

An important feature of the finite element approach used 
for the advective terms is that these terms are computed at 
each grid point directly from the velocity fields and are then 
resolved into their modal amplitudes. This only requires the 
eigenfunctions at that one grid point. This approach never 
requires horizontal derivatives of the eigenfunctions or 
eigenfunctions at more than one point at a time and thus 
preserves the advantage of the B-grid over the C-grid. 

In Section 2 we write down the basic equations for the 
spectral method, using eddy-viscosity eigenfunctions as 
basis functions and in Section 3 some details of the numeri- 
cal scheme are given. In Section 4 numerical results are 
given for a number of problems designed to test the 
accuracy of the algorithm and bounds on its stability are 
determined. 

2. BASIC EQUATIONS 

(a) Hydrodynamical Equations 

We use xyz as Cartesian coordinates with the z-axis 
pointing vertically upwards and the xy-plane occupying the 

undisturbed position of the water surface. The integrated 
equation of continuity and the horizontal momentum equa- 
tions for a homogeneous sea, including the nonlinear terms, 
but neglecting shear in the horizontal and the direct 
influence of tide-generating forces, and making the usual 
hydrostatic pressure approximation, may be written as 

‘+P+4=0 
at ax ay 

au au 
~+U~+v-+W~-f” 

ay 

=-gi,?? N$ ) 
ay aZ ( > 

(2) 

where the volume transports and vertical component of 
velocity are given by 

u dz, v dz 
h 

v dz. 

The notation used in these equations is as follows: 

4x> Y) water depth 

ux, Y, 1) surface elevation at time t 

44 Y, z, t), 4% y, z, t) horizontal velocity components 

w(x, y, z, t) vertical velocity component 

P(X? Y, t), 4(X> Y? t) depth integrated volume 
transports 

f Coriolis parameter 

Nx, y, z, t) vertical eddy viscosity 

g acceleration due to gravity. 

Equations (1 )-( 3) require boundary conditions on the sea 
surface and at the sea bed. The surface conditions, evaluated 
at z=[, are 
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where p is the fluid density and rX and 5Y the components of 
wind stress acting on the free surface in the x and ,v 
directions. Correspondingly, at the sea bed, z = -h, the 
conditions are taken to be 

(b) Eddy- Viscosity Eigenexpansion 

The fundamental idea of the spectral method is to expand 
the complex velocity U in terms of some set of basis 
functions. Since this quantity satisfies the inhomogeneous 
boundary conditions (1 1 ), such an expansion cannot con- 
verge uniformly, hence it will converge slowly. A more 
rapidly convergent expansion is obtained if, first, a suitable 
function is subtracted from U. This general technique is 
described, for example, by Gottlieb and Orszag [ 191 and in 
the present context it was proposed by Lardner [lo] and 
Davies [ 121. Thus we define 

N$cI+K*pT7]U, 

iv;= [ic, +K,Jz7,v, 

(7) 

where rci and K~ are the coefficients of linear and quadratic 
bottom friction, respectively. A no-slip condition on the 
bottom is obtained in the limiting case pi and rc2 -+ cc, that 
is, 

da’ + BH 1; &$ do’. (15) 

uIz, --h = VI,= --h =o. (8) 
This function satisfies that 

ni%HS 
a0 on o=l, 

N%HB 
(17) 

aa on o=O. 

(16) It is convenient to use a sigma coordinate, defined as usual 
by 

o = (z + h)/H, (9) 

where H = h + c is the total water depth. The momentum 
equations can then be transformed and combined in 
complex form as [ 17, 181 

Then, setting U(o) = V(a) + W’(a), we obtain the 
following boundary value problem for W: 

=-g(z+i$)+F,, 

aw 
z+ifW-HP2; 

= -g(z+i$)+F,, 

(10) 

(11) +H-l(S-B)-$V. (18) 

NEW=0 
aa on a=Oando= 1. (19) 

As originally proposed by Heaps [ 1, 23, it is advantageous 
to use as basis functions the eddy-viscosity eigenfunctions, 

(12) which are defined as eigensolutions of the equation 

Ng=HS on o=l 

N%ffB 
aa 

on 0=0, 

where U = u + iv and 

s _ L + 1t.v ) 

P 
B=(Kl +K2 lUI)UI,=, 

; N(o)g +A2q5=0. ( > (20) (13) 

(14) 
For the present problem, in view of conditions (19), the 

appropriate boundary conditions are 

In Eq. (13) and (14), the x and y derivatives are at 
constant 6. 

NKO 
a0 

on a=Oanda= 1. (21) 
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We denote the eigenpairs by {dj(a), Aj:j=O, 1, 2, . ..}. 
where the lowest eigenpair is I, = 0, &((T) = 1. For a general 
eddy-viscosity, it is necessary to compute the other eigen- 
pairs numerically. For this purpose we have used the 
subroutine SLEIGN [20].’ This routine has also been used 
for similar computations by Kuzmic [21]. We assume the 
eigenfunctions are normalized so that 

The eigenfunctions then form an orthonormal system, and 
in particular, orthogonality with & implies that 

I o1 q5j(cJ) da = 0, j> 1. (23) 

In general, these eigenpairs depend on x and y, and also 
on t if the eddy-viscosity is time dependent. For the general 
case they must be determined numerically, and if N varies in 
a general way with t this usually makes the method imprac- 
tical, since the eigenfunctions must be re-determined at each 
time step for all horizontal points. Consequently, we shall 
from now on restrict to the case when N is independent 
of t.* The eigenfunctions can then be determined at the 
beginning of the computation and, although this can be 
quite expensive, it only has to be done once. 

We now expand Win terms of the eigenfunctions: 

W(a) = co + 1 Cjcjj(U). (24) 
i> 1 

In view of the orthonormality of the eigenfunctions, the 
coefficients in the expansion (24) are given by 

I 

1 
co = W(a) da = W, 

0 

ci = s 
’ W(a) qSj(a) do, j> 1. 

0 

Using the definition of W, we have that co = u- v and 
from Eq. (15) it then follows that 

co= u-H(S-B) j; Fdo. (26) 

’ We are indebted to Dr. Paul Bailey for his help in supplying us with a 
recent version of this program. 

* The method can readily be extended to the case when the eddy viscosity 
has the form 

that is, at any point N has a similar profile for all t. 

Integrating the differential equation (18) from g = 0 to 
0 = 1 and using the boundary conditions (19), we obtain an 
equation for cO. This is equivalent to the usual depth- 
averaged momentum equation, and it is in fact more 
convenient to use this equation in the latter form, which 
can be obtained more directly by integrating Eq. (10): 

g+@+g($+i$)=R,. (27) 

where 

Ro=Hp’(S-B)+jlF,,do. (28) 
0 

Multiplying the differential equation (18) by 4j(a), 
integrating from r~ = 0 to 0 = 1 and using the boundary 
conditions (19) and (13), we obtain a system of differential 
equations for the coefficients cj: 

acl at+ajc,= R,. 

where olj = h P2A,f + if and the right side is given by 

Rj=R~L+R)‘+(H~2-hh2)~:cj 

with 

and 

R;= -g-W-V 1 q3jdo= -$-i/l,, 

(29) 

(30) 

(31) 

(32) 

provided the eigenfunctions are time-independent, where 

I,= 
s 

’ V(o)qJj(a)do 
0 

=$ {H&$(l)- HL$bj(0)}. (33) 
“J 

In the numerical solution of Eq. (27) and (29) the terms on 
the right sides are treated explicitly. The final small 
nonlinear term on the right of Eq. (30) can quite easily be 
accommodated on the left side of (29), but the coefficients 
on the left than become time-dependent and this adds 
significantly to the cost of the algorithm. 

In order to obtain initial conditions for the system (27) 
and (29), we assume the motion starts from some given 
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velocity, U = U,, at t = 0. In practice, this is taken to be a 
state of rest, U, = 0. Then at t = 0, W= - V, so the initial 
values of the coefficients are given by 

where Eq. (33) has been used, together with the fact that 
B=Oat t=O. 

To summarize the problem that we are now left with, 
Eq. (1) and (27) form a coupled system for c and 
p + iq = HU with these variables having zero initial values. 
Lateral boundary conditions on the coastal and open por- 
tions of the boundary are required to form a well-posed 
problem and these can be taken in the same form that is 
usually used for two-dimensional models. The coefficients c, 
that determine the vertical structure of the fluid velocity are 
obtained by solving the system (29) with initial conditions 
(34). In terms of these quantities, the velocity field is given 
by 

- H(S- B) j; “‘;(-,;‘) du’ + c cidj(o). (35) 
121 

The coupling between the system (l), (27) and Eq. (29) 
occurs only through the nonlinear and bottom friction 
terms which are treated explicitly in this approach. Such 
treatment does raise the possibility of potential instability, 
and this is one of the questions we shall examine in the tests 
described in Section 4. 

(c) No-Slip Condition 

Some differences occur for the no-slip boundary condi- 
tion (8). In the definition of the function V the final term in 
Eq. ( 15) is dropped and the boundary conditions (21) on 
the eigenfunctions are changed to 

fp=o on 0=0, 

J&z0 
aa on a=l. 

There is no zero eigenvalue in this case, so Eq. (23) does not 
hold. Equation (35) is replaced simply by 

U(o) = HS j; & dcf + c c,4Ja). (35’) 
j2 1 

Proceeding as before, we obtain the system of differential 
equations for the coefficients in place of Eq. (29), 

$+uici+{g($$+i$)+HplS}j]:qbjd~=R,, (29’) 

where Rj is again given by Eq. (30)-(32). However, the right 
side of Eq. (33) requires modification to 

I,- j; V(o)e,c,)do=F j’oq$(c)do. (33’) 
*I ’ 

A corresponding change occurs in the initial condition (34). 

3. COMPUTATIONAL DETAILS 

(a) Finite Difference Scheme 

In this subsection we shall give a brief description of the 
horizontal and temporal finite difference schemes. More 
details can be found in Ref. [ 151. 

As mentioned in the Introduction, we propose to use an 
Arakawa B-grid in the horizontal directions, due to its 
advantages over the more usual C-grid when a spectral 
method is used. Figure 1 shows, for a rectangular region, the 
distribution of grid points at which the variables [, u, and v 
are computed for this grid [ 131. The spatial finite difference 
approximations to Eq. ( 1) and (27) that are appropriate for 
this grid are 

(36) 
- 

g+ ifu+ g{(6,+ i(s,i)“} = R,. (37) 

In these equations the horizontal grid indices m and n 
in the x- and y-directions have been suppressed and the 
following notation is used for any net function fl: 

This scheme is second order in the spatial grid dimensions 
at points in the interior of the region. Points adjacent to the 

‘This scheme is a two-level scheme and differs from the three-level 
leapfrog scheme described for example by Haltiner and Williams [22]. 
This latter scheme suffers from the disadvantages of the existence of a 
computational mode and separation of the solutions at alternating 
grid-points, which the present scheme does not. 
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FIG. 1. The B-grid for the rectangular region used in the model 
problems of Section 4(b). The symbol 0 indicates a point at which [ is 
computed and + indicates a point at which I(, v, and c, are computed. 

lateral boundary require special treatment, which is 
described in [ 151. Equation (29) has no spatial derivatives 
on the left and is taken as it stands at the grid point (m, n). 

The time differencing scheme is a leapfrog3 scheme in 
which [ and all velocity-associated variables are computed 
at alternating half-steps [ 101. On one half-step, Eq. (36) is 
used to update [; then on the succeeding half-step, Eqs. (37) 
and (29) are used to update u and ci. This scheme has the 
advantage of being explicit and also second order in the 
time step. 

Since the system (29) is stiff if many eigenfunctions are 
included in the expansion (24), some care must be used in 
the choice of integration method. An unconditionally stable 
algorithm can be formed by time-centering the viscous 
terms (see Davies [6]). The following algorithm to update 

the solution over one time step from t to t + t is, however, 
both stable and more accurate for the higher modes: 

~~(r+~)=c,(t)e~~‘+~~R~(t+s)e~~~“~”’ds 
0 

zcj(t)e-~T+Rj(t+f+l-eP.f’]. (38) 
/ 

A similar algorithm can be used also to update 0 from 
Eq. (37). 

In the case of the no-slip boundary condition, Eqs. (1) 
and (29’) form a coupled system and can be solved alter- 
nately using the same leapfrog method as described above. 
The c-derivatives on the right of Eq. (29’) are approximated 
as in Eq. (37) and are incorporated together with R, in 
Eq. (38). The algorithm in fact resembles that described for 
the B-grid in [15], except for the inclusion here of the 
advective and nonlinear bottom friction terms. 

(b) Computation of the Nonlinear Terms 

The computation of the integrals involving the nonlinear 
terms in Eqs. (28) and (3 1) is the most expensive part of the 
algorithm: about two-thirds of the total CPU time is spent 
on it. A finite elements method has been adopted for this 
computation, which we have found significantly more 
efficient than to evaluate the integrals by direct use of the 
eigenfunction expansions. 

Combining Eq. (13) and (31), we have 

- s d [uU.x + vu,] dj da, (39) 

with a similar expression with j = 0 for the integral term 
in Eq. (28). Here, subscripts of x, y, and 0 denote corre- 
sponding partial derivatives. 

We choose L equally spaced nodes {c,} in the interval 
[0, l] with g1 =0 and cL = 1 and spacing da= l/(L- 1). 
Each function of u is approximated piecewise linearly in 
each sub-interval, for example, in a, d (T d c, + , , 
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where U, is the value of U(o) at node I and so on. The We note that the nonlinear terms are computed here 
various terms in Eq. (39) are then approximated as directly from the three-dimensional velocity fields. This 

s 1 aU,djda= L-1 1 

avoids the appearance of horizontal derivatives of the eigen- 

(U,+,-U,)Sy’ 
functions. Since eigenfunctions at only one horizontal grid 

0 I= I point are used at any one time, the advantages of the B-grid 

s 1 L-l c 

are not forfeited. - 
@U,qbjda= U,) 

0 
SF’ 

/= 1 

W,+;;W’(U,+, - 

L-1 
4. NUMERICAL RESULTS 

+ c +,tu,+, - U,) sy 
I= 1 (a) One-Dimensional Channel Flow 

s 
’ cU~,+~u,l~,do=L~’ {(u,U,,,+u,u ,“,, )sj,f’ 

It is not easy to find exact solutions of the nonlinear equa- 

0 I= 1 tions with which to test the accuracy of numerical algo- 

+ (%+ I Ux,l+ I + u/+ I q,,. 1) sf’ 
rithms. One such solution, however, occurs for the steady 
wind-driven flow in a channel of constant depth. If, for such 

+ (~IUx,I+ 1 u/+ 1 K,, a case of uni-directional flow, one makes the approximation 

+~I~.“,,+,+~l+*u,,,,)~~‘}~ 
HZ h, the advective terms become identically zero and the 
only nonlinearity is the bottom friction. In this case, for 

where 
constant eddy-viscosity, the final steady solution can be 
found analytically. 

It remains to compute @ from Eq. (14). We first use a 
We take the channel to be closed at its ends, so that the 

trapezoidal approximation: 
boundary conditions are p = 0. Therefore p = 0 for all x. 
Then the solution of these equations is 

s 

“I /- I 

uda=$da c [ukcl +u,], 
0 k=l 

I 0, 

I- 1 

vda=$Aa 1 [u,+~+v,]. 
0 k=l 

Then ti, can be constructed recursively as 

ti 
1 

,+,=G,--Aa 
2 t-mu,+ 1+ Ul)l 

-,/(rc,h+3N)2+2uc2h2S} 

with&=1 ifSaOands= -1 ifS<O. 

+; CH(u,+, 
For the numerical solution, the dynamical equations ( 1 ), 

-, 
+ a} 

I (27), and (29) are solved from an initial state of rest until the 

With these approximations, Eq. ( 1) and (10) reduce, for 
steady flow, to 

where p = h s; u da = hi& and the boundary conditions (11) 
are 

Nk.hS 
aa on a=l, 

N~=hBsh(ic,+~, lul)u on a=O. 

U(a) = fu(0)(3a2 - 6a + 2) 

+ (Sh/4N)(3a2 - 2a) 

a[/ax = (6&(O) + 3Sh)/2gh2, 

where the bottom velocity is given by 
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steady flow is reached. In this case, these equations simplify spaced along the channel. The velocity is given at the 
to surface, mid-depth, and bottom in each case. Results are 

given for several combinations of values of the linear and 
quadratic friction coefficients K, and K~. It can be seen that 
the numerical results are quite accurate, even for very small 
drag coefficients and that the algorithm remains stable for 
both small and large values of these coefficients. 

while the velocity is obtained from Eq. (35) as (b) Rectangular Sea with Constant Eddy Viscosity 

In order to test the algorithm for the full three-dimen- 
sional nonlinear hydrodynamic equations, we have made 
use of the simplified storm-surge model of the North Sea 

+ 1 c,4,(c). 
used by Davies [4, 7-93 and also several other investigators 
[e.g., 10, 141. The model region consists of a closed rec- 

/a1 tangular sea of dimensions 400 km in the x-direction and 
800 km in the y-direction, with grid spacings Ax = 40019 km 

The algorithm described in Sections 2 and 3 is easily and Ay = 800/17 km. Figure 1 shows the B-grid used for this 
adapted to these simplified equations by setting the Coriolis region. The depth is taken uniformly as 65 m. The sea is 
parameter equal to zero and bypassing computation of the initially in a state of equilibrium and starting at t = 0 is sub- 
y-component of velocity. All nonlinear terms are suppressed jected to a constant surface shear stress in the negative 
except for the bottom friction. Some typical results are given y-direction, with values z, = 0, rY = - 1.5 N/m2. The values 
in Table I. In these computations, the values of the various of the other parameters (all in MKS units) are p = 1025, 
parameters where chosen as h = 65 m, Ax = 47,059 m, N=0.065, g=9.81, and f= 1.22x 10p4. A time step 
t = 360 s, N = 0.065 m2/s, and g = 9.81 m/s’. Six eigenfunc- z = 360 s was used. These parameters have been chosen to 
tions were used in the calculations and the length of the be identical to those used in earlier work [S, 93 so that com- 
channel was 16 horizontal grids. parisons can be made. Comparable results to many of those 

Table I gives the exact solution in the last column and in reported below have also been obtained with a shallower 
the adjacent columns the computed solutions at three points depth of 35 m. 

TABLE I 

Computed and Exact Velocities in cm/s for Steady Wind-Driven 
Flow in a Channel with Different Values of Linear and Quadratic 
Friction Coefficients 

Computed solution at points 
Exact 

K, and rcZ Level (2) (8) (15) solution 

TABLE II 

Computed Velocity Profiles in cm/s after 30 h 
for the Linearized Equations 

Velocity CL21 (8, 10) (5,15) 

Surface u -9.86 - 14.82 - 10.56 
t‘ - 39.68 - 35.03 -35.95 

K, = 0.002 s -40.54 -40.56 -40.55 -40.53 Mid-level n 5.51 1.12 4.78 
KZ = 0.05 M 8.11 8.09 8.10 8.11 ” 3.47 7.67 6.91 

B 8.07 8.07 8.07 8.07 
Bottom u 9.96 7.28 9.38 

K,=0.002 s -41.99 -42.01 - 42.00 -41.99 ” 8.51 10.97 10.63 
K2=0.015 M 7.74 7.73 7.74 7.15 

B 10.98 10.98 10.98 10.98 Surface u -9.85 - 14.85 - 10.58 
u - 39.72 - 34.97 - 35.98 

Jcl=O S -43.60 -43.60 -43.60 -43.61 
aZ=0.015 M 7.35 7.36 7.35 7.34 Mid-level u 5.52 1.11 4.78 

B 14.22 14.23 14.22 14.22 u 3.47 7.12 6.92 

K[ =o S -45.66 -45.12 -45.44 -45.78 Bottom u 9.95 7.27 9.41 
K* = 0.005 M 6.91 7.43 7.12 6.80 ” 8.56 11.03 10.72 

B 18.65 18.99 18.78 18.57 
Note. Profiles are given at the three grid points (2,2), (8, lo), and 

Note. Velocities are given at the surface, mid-point, and bottom of the (5, 15) (see Fig. 1). The upper part of the table provides the results from the 
water column. present algorithm and the lower part from the implicit algorithm of [ 157. 
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An initial series of computations was designed to test the 
accuracy and stability of the explicit treatment of bottom 
friction in a dynamical problem as opposed to the steady 
problem of the preceding subsection. Here we compared the 
solutions obtained for the linearized equations with those 
obtained using an earlier algorithm [ 151 in which the linear 
bottom friction is incorporated into the construction of the 
eigenfunctions, and so it is treated implicitly. 

Some typical computed results are shown in Table II. The 
upper and lower parts of the table show the numerical solu- 
tions computed with the time step 5 = 360 s using respec- 
tively the present algorithm and the old implicit algorithm 
of [ 151. It is clear that no significant errors are introduced 
in this case by the explicit treatment of the bottom stress. 

A second series of computations was designed to test the 
rate of convergence of the eigenfunction expansion in com- 
parison with that obtained by Davies [9]. A quadratic law 
of bottom friction was used, with K, = 0 and K~ = 0.002, and 
all nonlinear terms were retained in the equations. The 
computation was repeated with 4, 6, and 10 eigenfunctions 
included in the expansion (where the j = 0 eigenfunction is 
also counted). 

Typical results are shown in Table III in which are given 
the components of fluid velocity at the centre of the 
rectangular sea and at the surface and bottom of the water 
column, as well as the surface elevation at the point B in 
Fig. 1,30 h after the onset of the wind. It can be seen that the 
expansion converges quite fast; for the expansion truncated 
after six eigenfunctions, the maximum error in the com- 
puted current (using the solution with 10 eigenfunctions as 
the standard) is only 0.04 cm/s. The maximum difference 
over the whole rectangle between the values of i computed 
using 4 or 10 eigenfunctions is 0.1 cm. 

The final row of Table III lists the CPU times for each 
computation (using an IBM 308 1). The interesting fact here 

TABLE III 

Components of Velocity in cm/s after 30 h at Point A in Fig. 1 
and Surface Elevation at Point B computed for the fully nonlinear 
equations with different numbers of eigenfunctions 

Number of eigenfunctions 

Component 4 6 10 

Surface u ~ 19.60 - 19.73 - 19.77 
velocity u -31.39 -31.37 -31.37 

Bottom u 8.37 8.32 8.31 
velocity ” 17.08 17.09 17.09 

Surface i 149.7 149.7 149.7 
elevation 

CPU time 180s 240 s 370 s 

is that the corresponding CPU times for the identical com- 
putations, except for the omission of the nonlinear advective 
terms, were in each case less than one-third of the figures 
listed. Thus the inclusion of the advective terms very 
significantly increases the cost of the spectral method. 
However, this cost can be very significantly reduced by 
using Davies’ time-splitting technique [9] by which the 
advective terms are re-computed every several steps rather 
than every step. 

It is interesting to compare the computational efficiency 
of the eigenfunction method with that of the direction-split- 
ting algorithms such as the one described in [ 18,231. For 
this rectangular sea problem, the eigenfunction method with 
four eigenfunctions requires slightly less CPU time than the 
splitting method if the linearized hydrodynamical equations 
are used. On the other hand, for the nonlinear equations, 
the CPU requirements of the eigenfunction method are 
about 50% greater than those of the splitting algorithm, 
and of course they increase if more eigenfunctions are 
employed. However, computing the advective terms every 
other step makes the two algorithms about equally efficient 
with four eigenfunctions. 

Table IV shows the results obtained by Davies [9] for 
this problem using Gram-Schmidt polynomials (equivalent 
to shifted Legendre polynomials) as basis functions. The 
rate of convergence is even somewhat slower than that in 
Table III, the maximum difference between the velocities 
computed with six and eight functions being 0.34 cm/s. 
Davies found much slower convergence if cosine functions 
are used, the reason being that these basis functions cannot 
satisfy the surface stress condition, giving a non-uniformity 
there. The Legendre (or Chebychev) basis come from a 
singular Sturm-Liouville problem, so the inhomogeneous 
boundary condition does not disturb the rate of con- 
vergence. It is therefore significant that comparable, or even 
slightly better, accuracy can be obtained using the 
eddy-viscosity eigenfunctions. The Legendre or Chebychev 

TABLE IV 

Components of Velocity at Point A and Surface Elevation at B 
after 30 h Computed by Davies [9], Using Different Numbers of 
Eigenfunctions 

Number of eigenfunctions 

Component 4 6 8 

Surface u - 17.62 - 17.58 - 17.56 
velocity r ~ 29.62 - 29.55 - 29.56 

Bottom u 9.75 9.79 9.45 
velocity L’ 18.41 18.47 18.45 

Surface i 140.8 140.8 140.5 
elevation 
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polynomials have, of course, the disadvantage of giving 
modal equations that are coupled via dominant terms. 

The differences between Tables III and IV in actual 
current values are, we believe, probably due to the different 
grids used in the two computations. In [9] a C-grid was 
used which, without modified treatment of the Coriolis 
terms near the boundaries, produces spurious numerical 
boundary layers, as pointed out by Jamart and Ozer [ 141. 
A side effect of this is to generate errors of several percent in 
flow variables throughout the rectangle while the B-grid 
used here automatically avoids such layers. In any event, the 
main point at issue here is the comparative rates of 
convergence of the two types of expansion. 

We chose the above problem as our benchmark because 
there is a body of results on it in the literature with which to 
compare our own results. For this problem, the advective 
terms are quite small. The ratio of advective terms to leading 
inertia terms can be estimated as (U’/L)/( U/T) = UT/L, 
where U, L, and Tare velocity, horizontal length, and time 
scales. In our problem, appropriate scales are U = 0.2 m/s, 
L = 100 km = lo5 m, and T= 3 h z lo4 s, leading to a value 
of the above ratio of 2%. This is confirmed by repeating 
the computation described in Table III with the advective 
terms omitted. The effect on the velocity components is 
around 1 %. 

This does not mean that the problem can be linearized, 
however; the effect of the nonlinear bottom friction is much 
more significant. We have also compared the velocities com- 
puted with bottom friction coefficients of 0.01 and 0.0001, 
the latter value corresponding to almost no friction. The 
difference in near surface velocity values is typically about 
10 % or less, but the near bottom values commonly differ by 
100%. Thus the earlier linear algorithms would not suffice 
for the problem dealt with here. 

It is usually the case in oceanographic flows that the 
advective terms are very small, and in the flow in some 
region of complex geometry there would usually be only a 
few locations where these terms were at all significant. 

TABLE V 

Components of Velocity in cm/s after 30 h at the Centre of the 
Rectangle Computed for the Fully Nonlinear Equations with 
Different Friction Coefficients 

K, = 0.002 K, = 0.002 h.,=o K, = 0.02 
Component x2 = 0 K* = 0.002 K2 = 0.02 K2 = 0.02 

Surface u - 15.51 - 15.05 - 14.51 ~ 10.25 
velocity I’ -35.25 - 35.64 -36.17 - 37.98 

Bottom u 6.91 6.48 6.61 1.39 
velocity L 21.65 21.69 21.14 26.05 

Surface i 140.0 138.2 133.5 136.7 
elevation 

EN 
0.05 1 

0.00 ! 
0.0 

I 1 , K2 
0.1 0.2 0.3 

bottom-frlctlon 

FIG. 2. Stability limits in the N-K~ plane when K, = 0 and t = 360 s. 

However, even though small, these terms can cause non- 
linear instabilities. Our tests show that the algorithm 
described in the paper is stable with respect to the nonlinear 
terms, and their presence in their usual magnitudes does not 
require an increased number of eigenfunctions. 

To verify to what extent this remains true for larger 
advective terms, we have recomputed the problem in 
Table III with wind stress increased by a factor of 10 to the 
unphysical value of 15 N/m’. The velocities are also 
increased by about this same amount, the maximum 
velocities now being of the order of 4 m/s. The maximum 
effect of the advective terms on the computed velocities is 
now close to 10%. The algorithm remains stable in this case 
and the differences in computed velocities between 6 and 10 
eigenfunctions at the centre of the rectangle are less than 
about 0.3%, only marginally greater than those in 
Table III. 

A final series of computations was designed to examine 
the effect of different friction coefficients and, in particular, 

L =4 

ONb ONb 0 Nb 
b 
N 

FIG. 3. The three eddy viscosity profiles considered in Section 4(c). 
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to ensure that the algorithm remains stable for large friction. 
Typical results are shown in Table V for several values of rcl 
and ICY. We have experimented with large values of ICY and 
~~ and small eddy viscosity to determine the stability limits 
of the algorithm. Using the time step of 360 s, the algorithm 
remains stable for all physically realistic values of these 
parameters. For example, with N= 0.065, stability is main- 
tained up to and beyond K~ = 0.2 when K, = 0 and up to 
ICY = 0.02 when K~ = K~. With ICY = 0 and ~~ = 0.002, stability 

2-l Case A 

-6hm, levels 
0 2 4 6 6 10 

Case C 

-3 I, levels 
0 2 4 6 6 10 

is maintained for N > 0.001, while for K, = 0.002 and ICY = 0, 
it is maintained for N > 0.004. Figure 2 shows the regions of 
stability and instability in the N-K~ plane in the case when 
KI=O. 

(c) Rectangular Sea with Variable Eddy Viscosity 

To further test the algorithm, a three-dimensional non- 
linear problem with a more realistic eddy viscosity function 

2 

1 
Case B 

0 2 4 6 6 IO 

U--velocity in x-direction 

V--velocity in y-direction 

FIG. 4. The velocity profile as a function of vertical coordinate, 75 h after the onset of the wind, at the centre of the rectangle (point A in Fig. 2), 
for the three eddy viscosity functions shown in Fig. 3, and for the no-slip bottom condition. 
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was used. Three cases of variable viscosity were considered, 
again following Ref. [9] for the sake of comparison, as 
shown in Fig. 3. The water depth was taken as 65 m, and the 
thicknesses d, and d, of the surface and bottom layers were 
taken as 11 m. Within these boundary layers N is assumed 
to vary linearly with the vertical coordinate, while N is 
constant through the rest of the water column. The values 
used for the parameters in the three cases were: 

Case A: N,) = 0.013 m2/s, N, = 0.065 m2/s, 

N, = 0.013 m2/s, 

Case B: N, = 0.117 m2/s, N, = 0.065 m2/s, 

N, = 0.013 m2/s, 

Case C: N, = 0.117 m2/s, N, = 0.065 m2/s, 

N,, = 0.065 m2/s. 

In this case, again for the sake of comparison with [9], a 
no-slip boundary condition (8) was used. The algorithm 
must then be modified as indicated in Section 2(c). Figure 4 
shows the two components of velocity as a function of verti- 
cal coordinate 75 h after the onset of the wind at the centre 
of the rectangle for the three eddy viscosity functions. These 
were computed using six eigenfunctions. The most striking 
feature of these figures is the sensitivity of the near-surface 
velocities to the value of N,. The no-slip condition prevents 
the bottom velocity from being as strongly affected by N,, 
although the effect on the velocity gradient is noticeably 
affected. 

In Fig. 5 we have reproduced the figure given by the con- 

u km/s) 

10 

-10 

-20 _I_ 

, v (cm/s) 

FIG. 5. The profiles of u and o computed by Davies [6] for the same 
case as shown in Fig. 4a. 

tinuous curves in Fig. 4 of [9] corresponding to Case A. 
This was computed using four Chebychev or shifted 
Legendre Polynomials. There is substantial, but not com- 
plete, agreement between this figure and that in Fig. 4a. The 
differences are again probably ascribable to the numerical 
boundary layers. 

5. SUMMARY 

The principal features of the algorithm described in this 
paper can be summarized as follows: 

(a) It is directed towards solving the fully nonlinear 
hydrodynamic equations as usually approximated for flows 
in shallow seas of uniform density, with an eddy-viscosity 
model of turbulence. 

(b) The numerical approach to the dependence on the 
vertical coordinate is a spectral method of Galerkin type, 
using eddy-viscosity eigenfunctions as the basis set. The 
advantage of this basis is that the modal equations are not 
coupled through the linear terms, which are the dominant 
ones in most cases. 

(c) By an appropriate modification of the velocity 
before expansion, the method provides a uniformly con- 
vergent series that converges rapidly and for which trunca- 
tions exactly satisfy the surface and bottom boundary 
conditions. 

(d) The cost of this modification is an explicit treatment 
of bottom friction. This certainly imposes a stability restric- 
tion which, however, has not turned out to be a serious 
limitation in the problems examined. 

(e) The advective terms are computed directly from the 
three-dimensional velocity fields using a finite element 
method. This is the most efficient means we have found for 
this part of the algorithm, which is by far the most expen- 
sive, requiring two-thirds of the total CPU time. This cost 
may, however, be reduced by computing these terms every 
several steps. 

(f ) The numerical approach to the horizontal variations 
is via a staggered B-grid, which has some advantages over 
the more usual C-grid when a spectral method is used. 

(g) A leapfrog method is used for the time-stepping, in 
which the surface elevation and the velocity are computed 
on alternate half-steps. Account is taken of the stiffness of 
the system of modal equations. 

(h) The algorithm permits arbitrary horizontal and 
vertical variation of eddy viscosity without any loss of 
computational efficiency. 

The performance of the algorithm has been tested 
satisfactorily on a number of problems (see Section 4). For 
steady wind-driven flow in a channel with nonlinear bottom 
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friction, good agreement is obtained with the analytical 
solution. For a dynamical wind-driven flow in a rectangular 
sea, the algorithm gives good agreement for the linearized 
equations with an earlier algorithm that is specifically 
adapted for the linear case. For the nonlinear case the 
expansions were found to converge at least as fast as those 
used earlier with bases consisting of Chebychev or shifted 
Legendre polynomials (and these bases lead to large coupling 
among the modal equations). 

In the test problems in Section 4, the nonlinear friction 
term has a significant effect on the solution, but the advec- 
tive terms are quite small. It is, in fact, usually the case in 
oceanographic flows that the advective terms are very small. 
However, even though small, these terms can cause non- 
linear instabilities. Our tests show that the algorithm 
described in the paper is stable with respect to the nonlinear 
terms and that their presence does not require an increased 
number of eigenfunctions, so in a problem in which these 
terms may be important, the algorithm is a computationally 
viable one. 
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